

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15) Horizon Chemical Co Inc

Chemwatch Hazard Alert Code: 3

Issue Date: **18/08/2021**Print Date: **05/05/2022**S.GHS.USA.EN

Chemwatch: **49-2480**Version No: **6.1**Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

SECTION 1 Identification

Product Identifier

Product name	Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)
Chemical Name	Not Applicable
Synonyms	Sodium hypochlorite;bleach;hypochlorous acid, sodium salt
Proper shipping name	Hypochlorite solutions
Chemical formula	Not Applicable
Other means of identification	Not Available

Recommended use of the chemical and restrictions on use

Relevant identified uses	Industrial, Manufacturing or Laboratory use.
--------------------------	--

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	Horizon Chemical Co Inc
Address	4444 Round Lake Rd W Arden Hills, MN 55112 United States
Telephone	651-917-3075
Fax	651-917-3087
Website	www.horizonpoolsupply.com
Email	info@horizonpoolsupply.com

Emergency phone number

Association / Organisation	Infotrack	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	800-535-5053	+1 855-237-5573
Other emergency telephone numbers	855-237-5573	+61 2 9186 1132

Once connected and if the message is not in your prefered language then please dial 01

Una vez conectado y si el mensaje no está en su idioma preferido, por favor marque 02

SECTION 2 Hazard(s) identification

Classification of the substance or mixture

Issue Date: **18/08/2021**Print Date: **05/05/2022**

NFPA 704 diamond

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification

Corrosive to Metals Category 1, Skin Corrosion/Irritation Category 1B, Serious Eye Damage/Eye Irritation Category 1, Hazardous to the Aquatic Environment Acute Hazard Category 2

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H290	May be corrosive to metals.
H314	Causes severe skin burns and eye damage.
H401	Toxic to aquatic life.

Hazard(s) not otherwise classified

Not Applicable

Precautionary statement(s) Prevention

	•
P260	Do not breathe mist/vapours/spray.
P264	Wash all exposed external body areas thoroughly after handling.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P234	Keep only in original container.
P273	Avoid release to the environment.

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.	
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P310	Immediately call a POISON CENTER/doctor/physician/first aider.	
P363	Wash contaminated clothing before reuse.	
P390	Absorb spillage to prevent material damage.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.
P406	Store in corrosive resistant/ container with a resistant inner liner.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

Page 3 of 17

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: **18/08/2021**Print Date: **05/05/2022**

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7681-52-9	10-15.6	sodium hypochlorite
1310-73-2	0.8	sodium hydroxide

SECTION 4 First-aid measures

Description of	first aid	measures
----------------	-----------	----------

escription of mist aid in	
Eye Contact	 If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719)
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

For acute or repeated exposures to hypochlorite solutions:

- Release of small amounts of hypochlorous acid and acid gases from the stomach following ingestion, is usually too low to cause damage but may be irritating to mucous membranes. Buffering with antacid may be helpful if discomfort is evident.
- ▶ Evaluate as potential caustic exposure.
- P Decontaminate skin and eyes with copious saline irrigation. Check exposed eyes for corneal abrasions with fluorescein staining.
- Emesis or lavage and catharsis may be indicated for mild caustic exposure.
- Chlorine exposures require evaluation of acid/base and respiratory status.
- Inhalation of vapours or mists may result in pulmonary oedema.

ELLENHORN and BARCELOUX: Medical Toxicology.

Excellent warning properties force rapid escape of personnel from chlorine vapour thus most inhalations are mild to moderate. If escape is not possible, exposure to high concentrations for a very short time can result in dyspnea, haemophysis and cyanosis with later complications being tracheobroncho-pneumonitis and pulmonary oedema. Oxygen, intermittent positive pressure breathing apparatus and aerosolysed bronchodilators are of therapeutic value where chlorine inhalation has been light to moderate. Severe inhalation should result in hospitalisation and treatment for a respiratory emergency.

Any chlorine inhalation in an individual with compromised pulmonary function (COPD) should be regarded as a severe inhalation and a respiratory emergency. [CCINFO, Dow 1988]

Chemwatch: 49-2480 Version No: 6.1

Page 4 of 17 Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: **18/08/2021**Print Date: **05/05/2022**

Effects from exposure to chlorine gas include pulmonary oedema which may be delayed. Observation in hospital for 48 hours is recommended

Diagnosed asthmatics and those people suffering from certain types of chronic bronchitis should receive medical approval before being employed in occupations involving chlorine exposure.

If burn is present, treat as any thermal burn, after decontamination.

for corrosives:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- ▶ Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- Where eyes have been exposed, flush immediately with water and continue to irrigate with normal saline during transport to hospital.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- ▶ Skin burns should be covered with dry, sterile bandages, following decontamination.
- ▶ DO NOT attempt neutralisation as exothermic reaction may occur.

ADVANCED TREATMENT

• Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.

- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- ▶ Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consider endoscopy to evaluate oral injury.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

Depending on the degree of exposure, periodic medical examination is indicated. The symptoms of lung oedema often do not manifest until a few hours have passed and they are aggravated by physical effort. Rest and medical observation is therefore essential. Immediate administration of an appropriate spray, by a doctor or a person authorised by him/her should be considered.

(ICSC24419/24421

SECTION 5 Fire-fighting measures

Extinguishing media

- Water spray or fog.
- Foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known.

Special protective equipment and precautions for fire-fighters

Alert Fire Brigade and tell them location and nature of hazard.

Wear full body protective clothing with breathing apparatus.

Prevent, by any means available, spillage from entering drains or water course.

Use fire fighting procedures suitable for surrounding area.

- Do not approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- ▶ Equipment should be thoroughly decontaminated after use.

Fire Fighting

Chemwatch: **49-2480** Page **5** of **17**

Version No: 6.1 Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: 18/08/2021
Print Date: 05/05/2022

Fire/Explosion Hazard

- ► Non combustible.
- ▶ Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of:

hydrogen chloride

May emit corrosive fumes.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Methods and material for containment and cleaning up		
Minor Spills	 Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. 	
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. 	

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Precautions for safe nand	siing
Safe handling	 DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Avoid contact with moisture. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Chemwatch: 49-2480 Page 6 of 17 Issue Date: 18/08/2021 Version No: 6.1

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Print Date: 05/05/2022

Liquid inorganic hypochlorites shall not to be transported in unlined metal drums. Inner packagings shall be fitted with vented closures and plastics drums and carbovs shall have vented closures or be performance tested to a minimum of 250 kPa. All non-vented packagings shall be filled so that the ullage is at least 10% at 21-25 deg.C. Vented packagings may be filled to an ullage not less than 5% at 21-25 deg.C, provided that this ullage does not result in leakage from, nor distortion of, the packaging.

- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- ▶ Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Suitable container
 - Drums and jerricans must be of the non-removable head type.
 - ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging:
- Cans with friction closures and
- low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

- Contact with acids produces toxic fumes
- Presence of rust (iron oxide) or other metal oxides catalyses decomposition of inorganic hypochlorites.
- ▶ Contact with water can cause heating and decomposition giving off chlorine and oxygen gases. Solid hypochlorites in contact with water or moisture may generate sufficient heat to ignite combustible materials. Thermal decomposition can be sustained in the absence of oxygen.
- Contact with acids produces toxic fumes of chlorine.
- ▶ Bottles of strong sodium hypochlorite solution (10-14% available chlorine) burst in storage due to failure of the cap designed to vent oxygen slowly during storage. A hot summer may have exacerbated the situation. Vent caps should be checked regularly (using full personal protection) and hypochlorites should not be stored in direct sunlight or at temperatures exceeding 18 deg. C
- Anhydrous solid hypochlorite may decompose violently on heating or if subject to friction.
- Inorganic hypochlorites reacts violently with many incompatible materials including fuels, oils, wood, paper, etc. which become readily ignitable. Avoid contact with peroxides glycerine, lubricating oil, combustibles, amines, solvents, charcoal, metal oxides and salts, copper, mercaptan, sulfur, organic sulfides, turpentine.
- Contact of hypochlorites with nitromethane, alcohols, glycerol, phenol or diethylene glycol monomethyl ether results in
- Ammonia or primary aliphatic or aromatic amines may react with hypochlorites to form N-mono- or di-chloramines which are explosively unstable (but less so than nitrogen trichloride). Contact in drains between effluents containing ammonium salts and hypochlorites and acid lead to the formation of nitrogen trichloride which decomposed explosively. Whilst cleaning a brewery tank, reaction between an acidified ammonium sulfate cleaning preparation and sodium hypochlorite, lead nitrogen chloride formation and violent explosion
- Interaction of ethyleneimine (aziridine) with hypochlorites gives an explosive N-chloro compound
- Interaction of metal hypochlorites with nitrogenous materials may lead to the formation of nitrogen trichloride with explosive
- ▶ Metal oxides catalyse the oxygen decomposition of the hypochlorite.
- Heating with carbon under confinement can result in explosion. Explosive interaction has occurred with carbonised food residues. After an attempt to clean these using bleach, and after heating, sodium chlorate appears to have been formed with consequent violent explosion
- ▶ Removal of formic acid from industrial waste streams with sodium hypochlorite solutions produced explosion at 55 deg. C.
- Explosions following reaction with methanol are attributed to formation of methyl hypochlorite.
- When finely divided materials such as sugar, wood dust and paper are contaminated with hypochlorite solution they burn more readily when dry.
- Calcium hypochlorite with over 60% "active" chlorine ignites on contact with lubricating oils, damp sulfur, organic thiols or
- Incompatible with sanitising bowl cleaners containing bisulfites.

Contact with acids produces toxic fumes of chlorine

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

Storage incompatibility

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US OSHA Permissible Exposure Limits (PELs) Table Z-1	sodium hydroxide	Sodium hydroxide	2 mg/m3	Not Available	Not Available	Not Available

Chemwatch: **49-2480** Page **7** of **17**

Version No: **6.1**

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: **18/08/2021**Print Date: **05/05/2022**

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US NIOSH Recommended Exposure Limits (RELs)	sodium hydroxide	Sodium hydroxide	Not Available	Not Available	2 mg/m3	Not Available
US ACGIH Threshold Limit Values (TLV)	sodium hydroxide	Sodium hydroxide	Not Available	Not Available	2 mg/m3	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
sodium hypochlorite	13 mg/m3	140 mg/m3	290 mg/m3
sodium hypochlorite	2 mg/m3	290 mg/m3	1,800 mg/m3
sodium hydroxide	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
sodium hypochlorite	Not Available	Not Available
sodium hydroxide	10 mg/m3	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit		
sodium hypochlorite	С	> 0.1 to ≤ milligrams per cubic meter of air (mg/m³)		
Notes:	potency and the adverse health outcomes associated with	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are

Issue Date: **18/08/2021**Print Date: **05/05/2022**

installed or used

Personal protection

Eve and face protection

► Contact len

Chemical goggles.Full face shield may be required for supplementary but never for primary protection of eyes.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber
- ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- \cdot chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

Hands/feet protection

- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

Other protection

- Overalls.PVC Apron.
- PVC protective suit may be required if exposure severe.
- ► Eyewash unit.
- ▶ Ensure there is ready access to a safety shower.

Recommended material(s) GLOVE SELECTION INDEX

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: **18/08/2021**Print Date: **05/05/2022**

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Material	СРІ
NATURAL RUBBER	A
NATURAL+NEOPRENE	A
NEOPRENE	A
NITRILE	A
NITRILE+PVC	A
PVC	A
BUTYL	С
NAT+NEOPR+NITRILE	С
NEOPRENE/NATURAL	С
PE	С
PE/EVAL/PE	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON/CHLOROBUTYL	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	B-AUS P2	-	B-PAPR-AUS / Class 1 P2
up to 50 x ES	-	B-AUS / Class 1 P2	-
up to 100 x ES	-	B-2 P2	B-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- \cdot Use approved positive flow mask if significant quantities of dust becomes airborne.
- \cdot Try to avoid creating dust conditions.

76b-p(

Class P2 particulate filters are used for protection against mechanically and thermally generated particulates or both.

P2 is a respiratory filter rating under various international standards, Filters at least 94% of airborne particles

Suitable for:

- · Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.
- \cdot Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.
- · Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Colourless to yellowish alkaline liquid with no odour to chlorine like odour; mixes with water.		
Physical state	Liquid	Relative density (Water =	1.20
Odour	No Odour	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable

Chemwatch: **49-2480** Page **10** of **17**

Version No: **6.1**

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: **18/08/2021**Print Date: **05/05/2022**

pH (as supplied)	11	Decomposition temperature	Not Available
Melting point / freezing point (°C)	-26	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	104	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	The material is not thought to produce adverse health effects following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Chlorine vapour is extremely irritating to the airways and lungs, causing coughing, choking, breathing difficulty, chest pain, headache, vomiting, fluid accumulation in the lungs, chest infection and loss of consciousness. Effects may be delayed. Long term exposure (at workplace) may lead to corrosion of the teeth, irritate the linings of the nose and may increase the likelihood of developing tuberculosis. Recent studies have not confirmed these findings. Very low concentrations may irritate the eyes, nose and throat and cause the above reactions. Inhaling corrosive bases may irritate the respiratory tract. Symptoms include cough, choking, pain and damage to the mucous membrane.
Ingestion	The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Swallowing hypochlorites may cause burning in the mouth and throat, abdominal cramps, nausea, vomiting, diarrhea, pain, inflammation f the mouth and stomach, low blood pressure, shock, confusion and delirium. Severe poisonings may lead to convulsion, coma and death. Hypochlorites irritate the mouth, throat and stomach; the hypochlorous acid liberated in the stomach can cause tearing of the stomach wall, with bleeding, and can be fatal. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.
Skin Contact	The material can produce chemical burns following direct contact with the skin. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Skin contact will result in rapid drying, bleaching, leading to chemical burns on prolonged contact Open cuts, abraded or irritated skin should not be exposed to this material Contact may cause severe itchiness, skin lesions and mild eczema. Exudation and sloughing may occur. Two patients were reported with chronic allergic dermatitis of the hand, related to sensitization to sodium hypochlorite as the active component of laundry bleach. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material can produce severe chemical burns following direct contact with the skin.

Chemwatch: **49-2480**Page **11** of **17**Issue Date: **18/08/2021**Version No: **6.1**Print Date: **05/05/2022**

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage. Hypochlorite in pool water at concentrations of 1 ppm chlorine or less is non irritating to eyes if the pH is higher than 7.2 (slightly Eve alkaline); At lower pH sensation of stinging, smarting of eyes with transient reddening may occur but generally no injury. Eye contact with a 5% hypochlorite solution may produce a temporary burning discomfort and slight irritation of the epithelium of The material can produce severe chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is limited evidence that, skin contact with this product is more likely to cause a sensitisation reaction in some persons Chronic compared to the general population. Reduced breathing capacity may result from chronic low level exposure to chlorine gas. Chronic poisoning may result in cough, severe chest pains, sore throat and blood in the phlegm. Moderate to severe exposures over 3 years produced decreased lung capacity in a number of workers. Delayed effects can include shortness of breath, violent headaches, lung swelling and pneumonia. Chloralkali workers exposed over many years showed fatigue, and a modest increase in anxiety and dizziness. There may be an increase in white blood cell and decrease in red blood cell count. TOXICITY IRRITATION Horizon Liqui-Chlor 12.5 Dermal (None) LD50: 10543.90 mg/kg*[2] Not Available (Hawkins Chemical Azone Inhalation (None) LC50: 26.3 mg/l(vapours)*[2] Oral (None) LD50: 526.70 mg/kg*[2] TOXICITY IRRITATION Dermal (rabbit) LD50: >10000 mg/kg^[1] Eye (rabbit): 10 mg - moderate sodium hypochlorite Inhalation(Rat) LC50; >2.625 mg/l4h^[1] Eye (rabbit): 100 mg - moderate Skin (rabbit): 500 mg/24h-moderate Oral (Mouse) LD50; 5800 mg/kg^[2] TOXICITY IRRITATION Dermal (rabbit) LD50: 1350 mg/kg^[2] Eye (rabbit): 0.05 mg/24h SEVERE Oral (Rabbit) LD50; 325 mg/kg^[1] Eye (rabbit):1 mg/24h SEVERE Eye (rabbit):1 mg/30s rinsed-SEVERE sodium hydroxide Eye: adverse effect observed (irritating) $^{[1]}$ Skin (rabbit): 500 mg/24h SEVERE Skin: adverse effect observed (corrosive)^[1] Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances as sodium hypochlorite pentahydrate Hypochlorite salts are classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. SODIUM HYPOCHLORITE The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. Hypochlorite salts are extremely corrosive and can cause severe damage to the eyes and skin. A number of skin cancers have been observed in mice, when applied to their skin. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. **SODIUM HYDROXIDE** The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration.

SODIUM HYPOCHLORITE & SODIUM HYDROXIDE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases.

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: 18/08/2021 Print Date: 05/05/2022

The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	~	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

★ - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

Horizon Liqui-Chlor 12.5	Endpoint	Test Duration (hr)	Species	Value	Source
Hawkins Chemical Azone 15)	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	72h	Algae or other aquatic plants	0.005mg/l	2
	LC50	96h	Fish	0.037mg/l	2
sodium hypochlorite	EC50	72h	Algae or other aquatic plants	0.018mg/l	2
	EC50	48h	Crustacea	0.01mg/l	4
	EC50	96h	Algae or other aquatic plants	~0.1~0.4mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
- Pour bodo de la	EC50(ECx)	48h	Crustacea	34.59-47.13mg/l	4
sodium hydroxide	LC50	96h	Fish	144-267mg/l	4
	EC50	48h	Crustacea	34.59-47.13mg/l	4
Legend:	4. US EPA, Ec	otox database - Aquatic Toxicity	pe ECHA Registered Substances - Ecotoxicolo Data 5. ECETOC Aquatic Hazard Assessment ncentration Data 8. Vendor Data		

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Chlorine:

Atmospheric Fate: Atmospheric chlorine forms hydrochloric or hypochlorous acid in the atmosphere, either through reactions with hydroxyl radicals or, other trace species, such as hydrocarbons. These acids are believed to be removed from the atmosphere primarily through precipitation washout/dry deposition. When chlorine, hypochlorous acid or hydrogen chloride mixes in the atmosphere with water vapor, dilute solutions of strong mineral acids form which fall to earth as "acid rain", snow, fog, or acidified dry particles.

Terrestrial Fate: Soil - Chlorine may react with soil components to form chlorides; depending on their water solubility, these chlorides are easily washed out from the soil. Plants - Vegetation acts as an important artificial reservoir, (sink), for chlorine air pollution. Elevated levels of chlorine can cause plant injury; however chlorine tends to be rapidly converted to other less toxic forms. Chlorine is toxic to plant growth, however; it is also essential to plant growth - crops need around 2 kg or more of chlorine per acre. Acute toxicity is characterized by defoliation, with no leaf symptoms and, in higher plant forms, by spotting of the leaves. Aquatic Fate: Water chlorination initially introduces chlorine into the water as chlorine gas, hypochlorite ion, or its salt. Chlorine in aqueous systems evaporates, or quickly decays, to residual forms, such as hypochlorous acid, chloramine and/or chlorinated organics. Chlorine, added to drinking water as chlorine gas, or hypochlorite salts, can inactivate bacteria in 20 minutes at very low concentrations, (pH range 7.0 to 8.5). Chlorine disinfectants in wastewater react with organic substances, giving rise to organic chlorine compounds, which are toxic to aquatic organisms and are persistent. In fresh, and wastewaters, (pH>6), complete evaporation occurs, with the formation of hypochlorous acid and chloride ions. Chlorines ultimate aqueous fate is transformation to chloride. Evaporation of molecular chlorine, (Cl2), from water to the atmosphere may be significant at low pH values and high concentrations, but, is insignificant at neutral pH and low concentrations.

Ecotoxicity: The reactions of chlorine in water produce a number of by-products, many of which may be toxic to genes or tumor promoting. The substance is not expected to accumulate or concentrate in aquatic organisms. Chlorine has high acute toxicity to aquatic organisms. The substance is highly toxic to Daphnia magna and Daphnia pulex water fleas, moderately toxic to Nitocra spinipes snails, and highly toxic to brook/rainbow trout, and green sunfish. Benign, oral skin tumors have been observed in fish exposed to chlorinated water supplies. Data from experimental studies indicate that injury to animals occurs only in the presence of high concentrations of chlorine, either in drinking water or the ambient atmosphere.

In freshwater, the hypchlorites break down rapidly into non-toxic compounds when exposed to sunlight. While chlorine levels decline rapidly In seawater,

Chemwatch: **49-2480** Page **13** of **17**

Version No: 6.1

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: **18/08/2021**Print Date: **05/05/2022**

hypobromite (which is acutely toxic to aquatic organisms) is formed. Sodium and calcium hypochlorite exhibit low levels of toxicity to birds, but they are highly toxic to freshwater fish and invertebrates. As hypochlorite is a highly reactive chemical, it undergoes a series of reactions, including oxidation of inorganic and organic species, and chlorination, forming organohalogen by-products. With a half-life of around 0.6 minutes, hypochlorite is rapidly broken down during use, in the sewer, and during sewage treatment. Due to its reaction with ammonia, concentration levels are predicted to drop substantially by the time it reaches the end of the sewer, and while cholormine will subsequently be increased, both these levels are significantly below the lowest acute EC50s determined for sodium hypochlorite and monochloramine. The organohalogens produced are low and are not expected to have an adverse effect on the environment. The levels of organohalogens in sewage effluent arising from bleach use is comparable with, and sometimes less, than drinking water that is disinfected by chlorination. After secondary sewage treatment, the levels entering receiving waters will be similar to background levels present in rivers. The AOX present is not believed to pose a risk of bioaccumulation to aquatic organisms.

Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
sodium hydroxide	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
sodium hydroxide	LOW (LogKOW = -3.8796)

Mobility in soil

Ingredient	Mobility
sodium hydroxide	LOW (KOC = 14.3)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- ► Reuse
- ► Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ► Treat and neutralise at an approved treatment plant.
- Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: **18/08/2021**Print Date: **05/05/2022**

Land transport (DOT)

Marine Pollutant	NO

UN number	1791		
UN proper shipping name	Hypochlorite solu	tions	
Transport hazard class(es)	Class 8 Subrisk Not Applicable		
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	Hazard Label 8 Special provisions 386, IB3, N34, T4, TP2, TP24		

Air transport (ICAO-IATA / DGR)

UN number	1791			
UN proper shipping name	Hypochlorite solution			
	ICAO/IATA Class	8		
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	8L		
Packing group				
Environmental hazard	Not Applicable			
	Special provisions		A3 A803	
	Cargo Only Packing Instructions		856	
	Cargo Only Maximum Qty / Pack		60 L	
Special precautions for user	Passenger and Cargo Packing Instructions		852	
usei	Passenger and Cargo Maximum Qty / Pack		5 L	
	Passenger and Cargo Limited Quantity Packing Instructions		Y841	
	Passenger and Cargo Limited Maximum Qty / Pack		1 L	

Sea transport (IMDG-Code / GGVSee)

	1		
UN number	1791		
UN proper shipping name	HYPOCHLORITE SC	DLUTION	
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk N	lot Applicable	
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number Special provisions Limited Quantities	F-A, S-B 223 274 900 5 L	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
sodium hypochlorite	Not Available

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: 18/08/2021 Print Date: 05/05/2022

Product name	Group	
sodium hydroxide	Not Available	

Transport in bulk in accordance with the ICG Code

Product name	Ship Type	
sodium hypochlorite	Not Available	
sodium hydroxide	Not Available	

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

sodium hypochlorite is found on the following regulatory lists

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs US - Massachusetts - Right To Know Listed Chemicals US AIHA Workplace Environmental Exposure Levels (WEELs)

US CWA (Clean Water Act) - List of Hazardous Substances

sodium hydroxide is found on the following regulatory lists

US - Massachusetts - Right To Know Listed Chemicals US ACGIH Threshold Limit Values (TLV) US CWA (Clean Water Act) - List of Hazardous Substances

US DOE Temporary Emergency Exposure Limits (TEELs)

US DOE Temporary Emergency Exposure Limits (TEELs)

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US Toxicology Excellence for Risk Assessment (TERA) Workplace Environmental Exposure Levels (WEEL)

US TSCA Chemical Substance Inventory - Interim List of Active Substances

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Limits (PELs) Table Z-1

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US TSCA Chemical Substance Inventory - Interim List of Active Substances

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Section 311/312 hazard categories

· ·	
Flammable (Gases, Aerosols, Liquids, or Solids)	No
Gas under pressure	No
Explosive	No
Self-heating	No
Pyrophoric (Liquid or Solid)	No
Pyrophoric Gas	No
Corrosive to metal	Yes
Oxidizer (Liquid, Solid or Gas)	No
Organic Peroxide	No
Self-reactive	No
n contact with water emits flammable gas	No
Combustible Dust	No
Carcinogenicity	No
Acute toxicity (any route of exposure)	No
Reproductive toxicity	No
Skin Corrosion or Irritation	
Respiratory or Skin Sensitization	
Serious eye damage or eye irritation	
Specific target organ toxicity (single or repeated exposure)	
Aspiration Hazard	No
Germ cell mutagenicity	No
Simple Asphyxiant	No
Hazards Not Otherwise Classified	No

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)

Reportable Quantity in Pounds (lb) Reportable Quantity in kg Chemwatch: **49-2480** Page **16** of **17**

Version No: 6.1

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

Issue Date: **18/08/2021**Print Date: **05/05/2022**

Name	Reportable Quantity in Pounds (lb)	Reportable Quantity in kg
sodium hypochlorite	100	45.4
sodium hydroxide	1000	454

State Regulations

US. California Proposition 65

None Reported

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (sodium hypochlorite; sodium hydroxide)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	Yes		
Japan - ENCS	Yes		
Korea - KECI	Yes		
New Zealand - NZIoC	Yes		
Philippines - PICCS	Yes		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		
Mexico - INSQ	Yes		
Vietnam - NCI	Yes		
Russia - FBEPH	Yes		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.		

SECTION 16 Other information

Revision Date	18/08/2021
Initial Date	11/09/2019

SDS Version Summary

Version	Date of Update	Sections Updated
5.1	08/08/2021	Classification
6.1	17/08/2021	Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Classification, Disposal, Fire Fighter (extinguishing media), Fire Fighter (fire/explosion hazard), Fire Fighter (fire fighting), Fire Fighter (fire incompatibility), First Aid (eye), First Aid (swallowed), Handling Procedure, Instability Condition, Personal Protection (other), Personal Protection (hands/feet), Physical Properties, Spills (major), Spills (minor), Storage (storage requirement), Storage (suitable container), Use

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

Chemwatch: 49-2480 Page 17 of 17 Issue Date: 18/08/2021 Version No: 6.1 Print Date: 05/05/2022

Horizon Liqui-Chlor 12.5 (Hawkins Chemical Azone 15)

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.